Bacteriophage effective against deadly bacteria in infant formula


Wednesday, 28 October, 2015

A bacteriophage has showed strong antimicrobial activity against a type of foodborne bacterium that often kills infants after infecting them via infant formula, according to research published in Applied and Environmental Microbiology, a journal of the American Society for Microbiology.

The study found that the CR5 phage showed high antimicrobial activity against the bacterium Cronobacter sakazakii, as well as against several other species of Cronobacter which can also cause dangerous illness, said co-author Sangryeol Ryu, professor in the Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Korea.

The research was conducted using infant formula that had been contaminated with C. sakazakii. “Interestingly, CR5 killed C. sakazakii quickly, and no C. sakazakii was detected in the infant formula after 10 hours had passed,” said Ryu.

Ryu said the phage is safe for humans, noting that his analysis of its genome revealed neither toxin gene nor virulence factor. In 2006, the US Food and Drug Administration approved the use of bacteriophages as biocontrol agents in foods, but the agency does not allow the use of antibiotics in infant formula.

Bacteriophages are abundant in the environment — which means they are ecologically friendly, said Ryu. “They infect and kill only bacteria, which means they could be used as novel biocontrol agents and even as natural food preservatives,” he added, noting that other foodborne pathogens could also be controlled by other types of phages.

Cronobacter is a family of closely related species that cause illness in people of all ages. While infection is rare in the US, these bacteria kill up to 40% of infected infants. Additionally, those that survive can face long-term neurological problems, according to the Centers for Disease Control and Prevention.

C. sakazakii-contaminated infant formula has been considered an unsolved problem because antibiotics cannot be used, according to Ryu, who added that C. sakazakii has been known to have multiple antibiotic resistance genes.

“In this study, we proved that C. sakazakii-phage CR5 is an efficient biocontrol agent in infant formula. Therefore, this bacteriophage treatment is a promising approach to solve this problem.”

Related News

Refrigerant guide for heat pump selection

The Australian Alliance for Energy Productivity has developed a refrigerant guide for heat pumps...

Call for comment on use of a nutritive substance in infant formula

Food Standards Australia New Zealand (FSANZ) is calling for comment on an application to permit...

GM-sourced processing aid for brewed beverages, call for comment

Food Standards Australia New Zealand (FSANZ) is calling for comment on a GM-sourced processing...


  • All content Copyright © 2025 Westwick-Farrow Pty Ltd