Tomato flowering time: research
Flowering time is crucial for crop yield and quality, directly affecting seed and fruit production. While extensive research has focused on flowering regulation in model plants such as rice, the mechanisms in tomatoes remain less understood.
In tomatoes, flowering time impacts both yield and the synchronisation of fruit production, which is vital for commercial farming. Addressing these challenges requires in-depth research to uncover the genetic factors controlling flowering time in tomatoes, aiming to enhance crop management practices and boost agricultural productivity.
A team from Huazhong Agricultural University, along with collaborators from Northwest A&F University, Zhumadian Academy of Agricultural Sciences and the University of Idaho discovered that the gene SlNF-YA3b regulates flowering time in tomatoes by binding to the promoter of the SINGLE FLOWER TRUSS (SFT) gene. The study explored the NF-Y transcription factor family, focusing on the NF-YA subunit, SlNF-YA3b. Using CRISPR/Cas9 technology, researchers created tomato plants with knocked-out SlNF-YA3b, leading to significantly earlier flowering compared to wild-type plants.
Conversely, overexpressing SlNF-YA3b delayed flowering. Biochemical assays confirmed that SlNF-YA3b binds directly to the CCAAT elements of the SFT gene promoter, repressing its expression. This suggests that SlNF-YA3b functions as a flowering time repressor in tomatoes. The study’s findings highlight the critical role of SlNF-YA3b in regulating flowering time, offering new insights into the molecular mechanisms of tomato flowering. These discoveries pave the way for genetic manipulation to control flowering time, potentially improving crop yield and synchronisation, thereby enhancing agricultural productivity and efficiency.
The discovery of SlNF-YA3b’s role in flowering time regulation has significant potential applications in agriculture. By manipulating this gene, it may be possible to control the timing of flowering to optimise fruit production and improve crop resilience to environmental changes. This research offers a promising path for enhancing the efficiency and productivity of tomato cultivation.
The full findings are published in Horticulture Research.
Fermenting future food sources for Australia
Forming a National Food Plan and appointing a food minister are among the key recommendations of...
Steinecker wins 2025 German Sustainability Award
Steinecker has won first place in the German Sustainability Awards for its biomass conversion...
Grant to advance probiotic microencapsulation tech
Xampla and Quadram Institute have received funding to work towards advancing plant polymer...