Scientists develop test to detect toxic chemical in honey


Tuesday, 26 October, 2021

Scientists develop test to detect toxic chemical in honey

Scientists from Russia’s Ural Federal University have developed a sensor that can quickly test for nitrobenzene, a deadly chemical that can contaminate honey and other foods.

Nitrobenzene is used industrially as a solvent and is involved in the manufacture of pesticides, which is how it can find its way into foodstuffs. Honey is particularly at risk of contamination for this reason. It is a difficult chemical to neutralise so its detection is the best way of keeping it out of consumers’ foods.

Until now, the detection process has been relatively cumbersome and longwinded, requiring special lab equipment for spectral analysis. With the development of the new testing methodology by the Russian scientists a portable test is a possibility.

The testing set-up is highly sensitive — enough so that the researchers were able to detect harmful levels of nitrobenzene in already available commercial honey samples — and sufficiently fast that with some development it could be utilised by food manufacturers wanting to ensure the safety of their products.

The test requires only a small amount of material to check for nitrobenzene and doesn’t need costly specialised labour to perform so it could prove useful in a range of food-testing applications.

The scientists are hoping to develop the test for widespread uses in the future.

The research was published in Food Chemistry and can be read here.

Image credit: ©stock.adobe.com/au/weyo

Related News

A fresh catch for Australian plates

A new white-flesh fish variety could soon work its way onto Australian plates, following...

Trolley-tech: Coles unveils its 'Smart Trolley'

Coles is set to trial an all-in-one AI-powered Smart Trolley, which allows users to skip the...

Nestlé develops algorithm to uncover dogs' bio age

Research conducted by Nestlé shows that a specifically developed algorithm for biological...


  • All content Copyright © 2024 Westwick-Farrow Pty Ltd