Exploring the physics of granular material flows


Friday, 17 May, 2019

Exploring the physics of granular material flows

The behaviour of granular substances plays a key role in many natural processes, such as avalanches and the motion of sand dunes, but is also important for industry. In the manufacture of foods, having a better understanding of the physical laws that govern granular materials can help optimise the efficiency of processing granular materials.

Despite the variety of practical applications, the physical laws that govern how granular materials behave are only partly understood. However, the opposite is true in the case of liquids — a number of well-established physical laws and mathematical instruments are used to describe their behaviour. This is particularly true for unstable, complex mixtures, such as emulsions, which have structures that quickly rearrange themselves.

Sand, coffee grounds and rice behave very differently to water or oil, but under certain conditions they will suddenly exhibit astonishing similarities.

Researchers from the group led by Christoph Müller, Professor of Energy Science and Engineering at ETH Zurich, in collaboration with scientists at Columbia University in New York, have discovered that under certain circumstances, mixtures made of granular materials exhibit striking similarities to mixtures of immiscible liquids and can even be described by similar physical laws.

To carry out their experiments, the researchers placed heavy and light grains in different configurations in a narrow container, which they vibrated while simultaneously passing air through it from below. These two processes 'fluidised' the grains, so that they began to behave similarly to liquids. From the outside, the researchers then observed how the materials in the container rearranged over time.

If, for example, a layer of heavy sand is placed on top of lighter sand, fluidisation will cause the lighter grains to migrate upwards due to their lower density and form globule-like structures much like viscous liquids. "The grains actually behave similar as oil in water would," explained Christopher McLaren, a doctoral student in Müller's group. "A complex interaction occurs between the two materials."

If a small quantity of light sand is embedded in heavy sand, the light sand will more or less move upwards in compact globules. However, in heavy sand, a more complex pattern emerges: a ball of heavy grains, surrounded by light grains, will not simply sink to the bottom intact. Rather, it will gradually disintegrate into several smaller globules, and the material will continue to branch out as time passes.

Under certain conditions, granular materials behave like liquids and form similar shapes. Image credit: ETH Zurich/Alexander Penn.

"Our findings are significant for several applications," said Alexander Penn, a postdoc involved in the experiments. "If, for example, a pharmaceuticals manufacturer wants to produce a very homogeneous powder mixture, it has to understand the physics of these materials in detail, so that it can control the process." The findings are also likely to be of interest to geologists, helping them to better understand the processes involved in landslides or how sandy soils behave during earthquakes.

Moreover, the work will also be relevant to improve energy efficiency. "If you analyse industrial processes, you can see that a significant share of the needed energy is used to process granular materials," explained Penn. "If we know how to better control granular materials, we can develop more energy-efficient manufacturing processes."

Image credit: ©stock.adobe.com/au/John

Related News

Making Australian canola oil more sustainable with solar power

Australian food manufacturer Riverina Oils has partnered with Flow Power to power its vegetable...

A fresh catch for Australian plates

A new white-flesh fish variety could soon work its way onto Australian plates, following...

Trolley-tech: Coles unveils its 'Smart Trolley'

Coles is set to trial an all-in-one AI-powered Smart Trolley, which allows users to skip the...


  • All content Copyright © 2024 Westwick-Farrow Pty Ltd