E. coli O157:H7 bacteria to colonise the gut of cattle have been identified.

" />

Blocking E. coli bacteria before they move in

By Rosalie Marion Bliss
Monday, 06 December, 2010


Key gene and chemical interactions that allow E. coli O157:H7 bacteria to colonise the gut of cattle have been identified.

A US Department of Agriculture (USDA) scientist and his colleagues have discovered key gene and chemical interactions that allow Escherichia coli (E. coli) O157:H7 bacteria to colonise the gut of cattle. The animals not only host, but can shed the deadly human pathogen.

Many E. coli O157:H7 outbreaks have been associated with contaminated meat products and cross-contamination of produce crops. Because the bacteria do not cause cattle to show clinical symptoms of illness, and due to other unknown variables, they can be hard to detect within cattle and the environment.

The researchers, including USDA Agricultural Research Service (ARS) animal scientist Thomas S Edrington, reported how the E. coli sense a key chemical that plays a critical role in allowing the bacteria to colonise inside the cattle’s gastrointestinal (GI) tract. ARS is USDA’s principal intramural scientific research agency. This research supports the USDA priority of ensuring food safety.

Edrington is with the ARS Food and Feed Safety Research Unit in College Station, Texas. The study, published in the Proceedings of the National Academy of Sciences, was conducted at the University of Idaho, Moscow, Idaho, campus. It involved researchers from several universities and was headed by Vanessa Sperandio, who is with the University of Texas Southwestern Medical Center, in Dallas.

To proliferate, E. coli express genes differently based on their environment, such as outside the cattle host, inside the cattle rumen or even at the end of the cattle GI tract. Having a better understanding of when, why and how these bacteria colonise could lead to practical applications in the future, according to Edrington.

The researchers showed that ‘quorum sensing’ chemicals called acyl-homoserine lactones (AHLs), which are produced by other bacteria, are present within the bovine rumen but absent in other areas of the cattle GI tract. AHLs are important because E. coli harbour a regulator, called SdiA, which senses these AHLs and then prompts the E. coli to attach and colonise.

 
Low temperature electronic micrograph of a cluster of E. coli bacteria. Each individual bacterium is oblong shaped. Photo by Eric Erbe, digital colouration by Christopher Pooley.

Limiting production of the SdiA chemical, or blocking bacterial reception of the AHLs, may eventually lead to new strategies for keeping E. coli from attaching inside the animal.

United States Department of Agriculture

www.usda.gov

Related Articles

Kerry drives innovation to meet demand for lactose-free products

With rising consumer demand for lactose-free products, Kerry drives dairy innovation Australia...

Four key flavour and colour trends for food & bev in 2025

ADM has released its flavour and colour trends report for 2025, outlining the four key trends...

Making 'scents' of non-alcoholic versions of beer or wine

Food and beverage researchers are working to recreate the enjoyable aromas and flavours that can...


  • All content Copyright © 2024 Westwick-Farrow Pty Ltd